PENERAPAN METODE FACEBOOK PROPHET UNTUK MERAMALKAN JUMLAH PENUMPANG TRANS METRO BANDUNG KORIDOR 1

Authors

  • Farhan Bagus Prakoso Universitas Padjadjaran
  • Gumgum Darmawan Universitas Padjadjaran
  • Achmad Bachrudin Universitas Padjadjaran

DOI:

https://doi.org/10.55681/armada.v1i3.416

Keywords:

Facebook Prophet, Peramalan, Trans Metro Bandung

Abstract

Trans Metro Bandung (TMB) menjadi salah satu pilihan transportasi umum yang cukup populer di Bandung raya, hal ini dikarenakan harganya yang relatif murah dan cakupan rute yang luas. Pada bulan April 2020 jumlah penumpang TMB koridor 1 mengalami penurunan yang signifikan akibat pandemi COVID-19. Selain itu, faktor pemberhentian operasional Damri dan faktor hari libur menjadi faktor penyebab fluktuasi jumlah penumpang TMB. Oleh karena itu diperlukan sebuah model yang dapat mengakomodir pengaruh faktor tersebut untuk meramalkan jumlah penumpang TMB. Model Facebook Prophet menjadi salah satu model peramalan populer yang memilki tingkat akurasi dan fleksibilitas yang tinggi. Oleh karena itu, peramalan jumlah penumpang bulanan Trans Metro Bandung koridor 1 pada penelitian ini menggunakan model Facebook Prophet. Dalam penelitian ini, model Facebook Prophet menghasilkan akurasi  peramalan yang sangat baik dengan MAPE testing sebesar 4,62% dengan coverage sebesar 0,89. Hasil peramalan jumlah penumpang TMB untuk enam bulan ke depan memiliki hasil yang berfluktuasi. Nilai terendah terjadi pada bulan Januari 2023 dan tertinggi pada bulan Agustus 2022.

Downloads

Download data is not yet available.

References

Alammal, Hesham & Almadany, Wael & Eskandarnia, Elham. (2021). What Prophet Says about Electrical Consumption -Forecasting Techniques for Big Temporal Data. https://doi.org/10.1049/icp.2021.0863

Borges, D., & Nascimento, M. (2022). COVID-19 ICU demand forecasting: A two-stage Prophet-LSTM approach. Applied Soft Computing.

Brockwell, P. J., & Davis, R. A. (2016). Introduction to Time Series and Forecasting - Second Edition. Springer-Verlag.

Ensafi, Y., Amin, S. H., Zhang, G., & Shah, B. (2022). Time-series forecasting of seasonal items sales using machine learning – A comparative analysis. International Journal of Information Management Data Insights.

Harvey, Andrew C, and Neil Shephard. 1993. “Structural time series models.” Handbook of Statistics, (edited by G.S. Maddala, C.R. Rao and H.D. Vinod), Vol. 11:Econometrics: 261-302. North Holland.

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice. Principles of Optimal Design, 504. https://otexts.com/fpp2/

Kementerian Perhubungan Republik Indonesia. (2022). Surat Edaran Menteri: https://jdih.dephub.go.id/index.php/produk_hukum/timeline/Surat%20Edaran%20Menteri

Lewis, C. (1982). Industrial and business forecasting methods. London: Butterworths Publishing.

Makridakis S, Wheelwright SC, H. R. (1997). 1 / the Forecasting Perspective. Forecasting Methods and Applications, 1–632.

Makridakis, Wheelwright dan McGee. (1999). Metode dan Aplikasi Peramalan (terjemahan). Jakarta: Binarupa Aksara.

Malefors, C., Strid, I., Hansson, P.-A., & Eriksson, M. (2020). Potential for using guest attendance forecasting in Swedish public catering to reduce overcatering. Sustainable Production and Consumption

Montgomery, D., Jennings, C., & Kulahci, M. (2015). Intoduction to TIME SERIES ANALYSIS AND FORECASTING Second Edition. Canada: John Wiley & Sons,Inc.

N. Kumar and S. Susan, "COVID-19 Pandemic Prediction using Time Series Forecasting Models," 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2020, pp. 1-7

Papacharalampous, G., & Tyralis, H. (2020). Hydrological time series forecasting using simple combinations: Big data testing and investigations on one-year ahead river flow predictability. Journal of Hydrology.

Pemerintah Kota Bandung. (2022). Open Data Kota Bandung: http://data.bandung.go.id/index.php/portal/detail_dataset/483100a5-0815-44e8-b21c-2a91fb06ad4b

Pontoh, R. S., Zahroh, S., Nurahman, H. R., Aprillion, R. I., Ramdani, A., & Akmal, D. I. (2021). Applied of feed-forward neural network and facebook prophet model for train passengers forecasting . Konferensi Nasional Penelitian Matematika dan Pembelajarannya (KNPMP) V

Prophet. (2022). https://facebook.github.io/Prophet/

Satrio, Christophorus & Darmawan, William & Nadia, Bellatasya & Hanafiah, Novita. (2021). Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET. Procedia Computer Science. https://doi.org/10.1016/j.procs.2021.01.036

Sergey, M. (2018). What is Facebook Prophet forecasting model. kaggle https://www.kaggle.com/code/smakarychev/what-is-facebook-Prophet-forecasting-model

Subashini, A & K, Sandhiya & Saranya, S & Harsha, U. (2019). Forecasting Website Traffic Using Prophet Time Series Model. International Research Journal of Multidisciplinary Technovation. 1. 56-63. https://doi.org/10.34256/irjmt1917.

Sunagar, P., Hanumantharaju, R., G.M., S., Kanavalli, A., & Srinivasa, K. (2020). Influence of big data in smart tourism. Hybrid Computational Intelligence Challenges and Applications.

Taylor, B. W. (2013). Introduction to management science. Pearson Education.

Taylor, S. J., & Letham, B. (2018). Forecasting at Scale. American Statistician, 72(1), 37–45.

Toni Toharudin, Resa Septiani Pontoh, Rezzy Eko Caraka, Solichatus Zahroh, Youngjo Lee & Rung Ching Chen (2021): Employing long short-term memory and Facebook prophet model in air temperature forecasting, Communications in Statistics - Simulation and Computation

Zhao, N., Liu, Y., Vanos, J., & Cao, G. (2018). Day-of-week and seasonal patterns of PM2.5 concentrations over the United States: Time-series analyses using the Prophet procedure. Atmospheric Environment.

Downloads

Published

2023-03-24

How to Cite

Prakoso, F. B., Darmawan, G., & Bachrudin, A. (2023). PENERAPAN METODE FACEBOOK PROPHET UNTUK MERAMALKAN JUMLAH PENUMPANG TRANS METRO BANDUNG KORIDOR 1. ARMADA : Jurnal Penelitian Multidisiplin, 1(3), 133–147. https://doi.org/10.55681/armada.v1i3.416