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INTROUCION

Abstract : The continuous development of electronic
systems has made the analog, digital, and mixed-signal
circuits more sophisticated, thus posing great difficulties
fo the existing fault defection and diagnosis (FDD)
methods. Traditional methods are mostly non-scalable,
cannot be adapted fo different situations and cannot even
sometimes recognize the same faulf among various
conditions. The present work is fo compare the faulf
diagnosing performance of various models based on
neural networks (NNs) in electronic circuits and fo point
out the NN archifectures, optimizations and hybrid
learning fechniques that the FDD performance of the NN
models. A thorough literature review study was done for
28 papers attesting the use of NNs in the circuif faulf
diagnosis writfen between the years 2016 and 2025
published in the scientific journals of IEEE Xplore,
Springer, Elsevier, and MDPI. The types of neural network
archifectures, faulf classification accuracy, noise and
dynamics robustness, and benefits from optimization and
feature extraction methods were the main aspects of the
papers under review. The findings show that multi-valued
neuron  networks, conditional variational NN,
convolutional neural networks, denoising autoencoders,
and optimized backpropagation models continuously
outperform the fraditional methods by acquiring higher
daccuracy, faster convergence and robust faulf defection
even in the most complex and demanding real-time
environments. In addition, the fraining process is made
easier and faulf identification is made wider by
optimization and hybrid learning approaches through
improved  fraining  efficiency and — multi-fault
classification. Generally, neural nefwork-based FDD
offers an intelligent, adaptive, and resilient solution that
has the power fo revolutionize the development of future
electronic systems with the characteristic of being smarf
and robust.

Keywords: Fault diagnosis, Neural networks, Analog
circuits, Digital circuits, Hybrid learning

The rapid evolution of modern electronic systems has intensified the need for highly reliable
and intelligent fault detection and diagnosis (FDD) mechanisms. Electronic circuits whether analog,
digital, or mixed-signal form the backbone of contemporary technologies, including power
networks, communication systems, microgrids, and industrial automation. As these systems
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increase in complexity, traditional model-based and rule-based diagnostic approaches have

become insufficient due to their limited scalability, high dependency on expert knowledge, and

inability to generalize across diverse fault conditions. Consequently, neural network (NN) based
fault diagnosis has emerged as a powerful alternative capable of learning nonlinear circuit
behavior, recognizing subtle fault signatures, and performing real-time classification (Mohd

Amiruddin et al., 2020; Furse et al., 2020).

Neural networks have demonstrated substantial success across diverse electronic circuit
applications. For analog circuits, researchers have proposed multi-valued neural network
classifiers capable of accurately differentiating between multiple fault categories (Aizenberg et al.,
2021). Conditional variational neural networks have further improved diagnosis by capturing
probabilistic relationships between circuit parameters and fault states (Gao et al., 2021). Similarly,
optimized backpropagation neural networks have been deployed for diagnosing power electronic
circuits, significantly improving robustness and detection speed (Jiang et al., 2024). Novel
algorithms such as the rider-optimization-based RideNN have also enhanced classification
precision in analog fault detection tasks (Binu & Kariyappa, 2018).

Deep learning approaches have expanded fault diagnosis capabilities even further.
Convolutional neural networks (CNNs) and deep autoencoders enable end-to-end feature
extraction from circuit signals, eliminating the need for handcrafted features (Wen et al., 2017;
Yang et al., 2021). In photovoltaic systems and power electronics, ANN-based models have
achieved high accuracy in detecting defects under complex environmental and operational
variability (Chine et al., 2016; Fu et al., 2016). Real-time arc-fault detection for smart electrical
systems has also been successfully implemented through deep neural networks, demonstrating the
feasibility of integrating intelligent FDD into IoT~enabled infrastructures (Siegel et al., 2018).

In digital and VLSI circuits, neural networks have been applied for transistor-level fault
analysis, open-circuit detection, and logic fault classification with notable improvements in
generalization and computational efficiency (Kumar & Singh, 2016; Sobanski & Kaminski, 2019;
Gaber et al., 2021). Hybrid energy systems, such as AC/DC microgrids, have also benefited from
NN-based online fault detection and localization (Jasim et al., 2022).

Overall, the integration of neural networks into electronic circuit fault diagnosis provides
transformative advantages, including adaptive learning, noise tolerance, predictive capabilities,
and scalability to complex circuit architectures. These advancements highlight neural networks as
essential tools for next-generation intelligent electronics and resilient cyber-physical systems.
Research Questions
RQ1: How effectively can neural network—based models detect and classify faults in analog, digital,

and mixed-signal electronic circuits compared to traditional diagnostic methods?

RQ2: What types of neural network architectures (e.g., CNN, autoencoders, CVNN, deep learning
models) provide the highest accuracy and robustness for fault detection under noisy,
dynamic, and real-time operating conditions?

RQ3: How does the integration of optimization techniques, feature extraction methods, or hybrid
learning approaches enhance the performance of neural networks in diagnosing multiple
and complex circuit faults?

State of the Art
Research on neural network—based fault detection and diagnosis (FDD) in electronic circuits

has expanded significantly over the past decade, largely due to the increasing complexity of modern

electronic systems and the limitations of traditional fault diagnostic approaches. Early studies
demonstrated that artificial neural networks (ANNs) could learn nonlinear circuit behaviors and
classify faults with higher reliability than rule-based or expert-driven methods. For instance,

Kumar and Singh (2016) showed that transistor-level diagnostic models based on ANNs

outperformed conventional testing techniques in digital circuits by offering better generalization

and noise tolerance.

In analog circuit diagnosis, various neural network architectures have been explored to
improve diagnostic precision and robustness. Aizenberg et al. (2021) introduced a multi~valued
neuron-based neural classifier capable of distinguishing multiple analog circuit fault categories,
demonstrating significant improvements in classification accuracy. Similarly, Gao et al. (2021)
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proposed conditional variational neural networks (CVNNs) to model probabilistic circuit—fault
relationships, enabling more reliable diagnosis under uncertain conditions. Optimization-driven
learning methods have also contributed to performance gains; the RideNN model by Binu and
Kariyappa (2018) employed a rider optimization algorithm to improve training efficiency and fault
classification accuracy in analog components.

Deep learning has brought transformative advancements to FDD research by enabling
automatic feature extraction from raw signals. Convolutional neural networks (CNNs) have proven
particularly effective for processing time-series and waveform data. Wen et al. (2017) developed a
CNN-based data-driven method that achieved high diagnostic accuracy across multiple industrial
electronic systems. Denoising autoencoders have also been used to handle noise contamination,
with Yang et al. (2021) demonstrating an end-to~end autoencoder-based framework capable of
extracting robust features for analog circuit fault detection.

Neural networks have also been applied to power electronics and energy systems. Chine et al.
(2016) leveraged ANN models to diagnose faults in photovoltaic systems, achieving strong results
even under environmental variability. For power electronic converters, Fu et al. (2016) integrated
wavelet analysis with neural networks to enhance fault recognition under dynamic operating
conditions. Recent work by Jiang et al. (2024) further showed that optimized backpropagation
neural networks could accurately diagnose faults in power electronic circuits, highlighting the role
of algorithmic enhancement.

METODE

This study adopts a Systematic Literature Review (SLR) methodology to synthesize, evaluate,
and interpret existing research on the application of neural networks for fault detection and
diagnosis (FDD) in electronic circuits. The review follows the PRISMA 2020 guidelines to ensure
methodological rigor, transparency, and replicability. The goal is to consolidate evidence from
high-~quality peer-reviewed publications and identify current progress, dominant neural network
models, research gaps, and emerging trends in electronic circuit fault diagnosis.

Review Protocol Design

A review protocol was developed to guide the entire process, defining the research questions,
search strategy, inclusion and exclusion criteria, and data extraction procedures. This protocol acts
as a safeguard against researcher bias and ensures consistency throughout the review. The protocol
was validated through expert consultation and trial searches across multiple scholarly databases.

Data Sources and Search Strategy
Table 1. Data Sources and Search Strategy Used in the Systematic Review

Component Description Time Span Filters Applied
Databases IEEE Xplore, ScienceDirect, MDPI, Nature, January Peer-reviewed
Used Google Scholar 2016 — journals,
December  conference
2025 papers, English~
language
publications
Justification Broad coverage of electronics, Al, machine  January Peer-reviewed
learning, and circuit diagnostics 2016 — journals,
December  conference
2025 papers, English-
language
publications
Search (“neural network” OR “deep learning” OR  January Peer-reviewed
Keywords “CNN” OR “autoencoder” OR “ANN”) AND 2016 — journals,
(“fault detection” OR “fault diagnosis” OR December  conference
“defect detection”) AND (“electronic 2025 papers, English-~

circuits” OR “analog circuits” OR “digital
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circuits” OR “power electronics” OR language
“VLSI”) publications
Study Peer-reviewed articles and conference January Peer-reviewed
Type/Selection papers focusing on NN-based fault detection 2016 — journals,
in electronic circuits December  conference
2025 papers, English-~
language
publications

Table 1 outlines the data sources and systematic search strategy employed for this review on
neural-network-based fault detection in electronic circuits. Four key components are presented:
databases used, justification for their selection, search keywords, and study type or selection
criteria. Five reputable databases IEEE Xplore, ScienceDirect, MDPI, Nature, and Google Scholar
were chosen for their broad coverage of electronics, artificial intelligence, and circuit diagnostics
research. The search covered the period from January 2016 to December 2025, capturing recent
advances in neural network architectures and fault diagnosis techniques.

A structured Boolean search string combining terms for neural networks, fault detection, and
circuit types was applied to ensure comprehensive retrieval. Search filters limited results to peer-~
reviewed journals and conference papers published in English, ensuring methodological rigor. This
structured strategy facilitated the identification of high-~quality studies that form the foundation for
the systematic literature review.

Inclusion and Exclusion Criteria
Inclusion Criteria

Table 2. Inclusion and Exclusion Criteria for Systematic Review

Inclusion Criteria Exclusion Criteria

Published between 2016-2025 Studies unrelated to fault detection
in electronic circuits

Peer-reviewed journal or conference papers Papers without neural network-
based implementation

Neural network models for fault diagnosis in analog Duplicate studies or inaccessible

circuits, digital circuits, power electronics, VLSIL, or PV full texts

systems

Full-text accessible Non-English publications

Empirical, experimental, or model-based studies written Review articles unless providing

in English methodological frameworks

The combined table presents the inclusion and exclusion criteria applied in this systematic
literature review to ensure methodological rigor, relevance, and reproducibility. The inclusion
criteria focused on studies published between 2016 and 2025, reflecting the latest developments
in neural network architectures and fault diagnosis techniques. Only peer-reviewed journal and
conference papers with full-text availability were considered. Studies were included if they
employed neural network models to detect and diagnose faults in analog circuits, digital circuits,
power electronics, VLSI, or photovoltaic systems, and followed empirical, experimental, or model-
based methodologies in English.

Conversely, the exclusion criteria eliminated studies that were irrelevant to electronic circuit
fault detection, purely theoretical without neural network implementation, duplicates or
inaccessible, non-English, or review papers lacking methodological contributions. By applying
these clear criteria, the review ensured that the final 28 selected studies represent a robust, high-~
quality dataset suitable for analyzing trends, neural network techniques, and performance
outcomes in electronic circuit fault detection and diagnosis research.

Study Selection Process (PRISMA Flow)
The selection procedure followed four stages:
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Figure 1. PRISMA Flow Diagram for Study Selection in the Systematic Review

Figure 1 illustrates the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) flow diagram depicting the study selection process for this systematic literature review
on neural network—based fault detection in electronic circuits. Initially, a total of 900 records were
identified through database searches across IEEE Xplore, ScienceDirect, MDPI, Nature, and Google
Scholar. Duplicate records (n = 300) were removed automatically, resulting in 600 unique records
for screening. During the title and abstract screening phase, 300 records were excluded based on
relevance criteria. Of the remaining 300 reports sought for retrieval, 210 full texts were not
accessible, leaving 90 reports assessed for eligibility.

During full-text assessment, 62 studies were excluded due to predefined reasons: 20 studies
were not related to electronic circuit fault detection, 30 studies lacked neural network—based
implementations, and 22 studies were duplicates or inaccessible. Ultimately, 28 high-quality
studies met all inclusion criteria and were included in the final systematic review.

This PRISMA flow demonstrates the rigorous, transparent, and reproducible process
employed to identify, screen, and select relevant studies. It ensures that the final evidence base is
comprehensive, methodologically sound, and suitable for synthesizing trends, neural network
architectures, and performance outcomes in electronic circuit fault detection research.

Data Extraction and Synthesis

Table 4. Data Extraction Form and Key Information Captured

Component Description / Details Captured

Publication Details Author(s), year, journal/conference, database source
Circuit Type Analog, digital, power electronics, VLSI, PV systems
Neural Network Model ANN, CNN, CVNN, autoencoder, GNN, hybrid NN
Used

Neural Networks for Fault Detection and Diagnosis in Electronic Circuits | 402



Shamsi ef al. 10.55681/armada.v3i11.1800

Dataset Characteristics & Dataset size, type of signals, simulated or real faults, fault

Fault Types categories

Experimental Setup & Training/testing setup, evaluation metrics (accuracy, F1-score,
Metrics precision, recall, training cost)

Strengths, Limitations & Key achievements, methodological innovations, limitations,
Contributions practical relevance

Table 4 outlines the structured data extraction form used in this systematic literature review
to systematically capture essential information from the 28 selected studies. The extraction form
ensured consistency, transparency, and comprehensiveness in the data collection process. Key
components included publication details such as authors, year, journal, and database source, as
well as the type of electronic circuit studied—analog, digital, power electronics, VLSI, or PV systems.
Neural network architectures were documented, including ANN, CNN, CVNN, autoencoder, GNN,
and hybrid models.

Dataset characteristics and fault types were recorded, specifying dataset size, signal types,
and whether faults were simulated or real. The experimental setup and evaluation metrics, such as
accuracy, Fl-score, precision, recall, and training cost, were also captured. Additionally, each
study’s strengths, limitations, and contributions were noted to evaluate methodological robustness
and practical relevance. Data synthesis was performed using narrative thematic analysis, grouping
studies into methodological themes such as deep learning, hybrid NN approaches, and
optimization-enhanced models. Where applicable, quantitative performance indicators were
compared across studies to highlight trends, identify best-performing models, and assess the overall
effectiveness of neural network-based approaches for electronic circuit fault detection.

Quality Assessment
Quality Assessment of Selected Studies

Methodological Validity

5

Real-world Neural Network
Applicability Architecture
Statistical Reliability Reproducibility

— 28 studies

Figure 3. Quality Assessment of Included Studies

This radar plot illustrates the aggregate quality assessment derived from the systematic
scoring of the 28 included studies on the application of neural networks for FDD. Each dimension,
rated on a 5-point Likert scale, gauges the overall robustness and scientific merit of the research
corpus. The assessment reveals a high, uniform level of quality across the board. Notably,
Methodological Validity and Statistical Reliability obtained the highest composite scores, indicating
that the selected papers employ rigorous experimental designs and validation procedures, which
enhances the trustworthiness of their reported findings. The score for Neural Network Architecture
is also strong, underscoring the sophistication of the employed deep learning and optimized
network models. However, while still high, Reproducibility and Real-world Applicability exhibit
marginally lower scores. This suggests a subtle, yet observable, opportunity for future researchers
to improve the transparency of their implementation details and to conduct more comprehensive
field-testing to bridge the gap between simulation-based results and industrial deployment. This
dependency of high-~quality research provides a dependable foundation for this review.
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RESULTS AND DISCUSSION
1. Results

The results of this study highlight the effectiveness of neural network—based approaches in
fault detection and diagnosis across various electronic circuits. Comparative analyses with
traditional methods demonstrate significant improvements in accuracy, robustness, and
adaptability. Different NN architectures and optimization strategies were evaluated to assess
performance under dynamic, noisy, and real-time conditions. The following sections present
detailed findings for analog, digital, and mixed-signal systems, emphasizing architectural
innovations and hybrid enhancements.

Neural Network-Based Fault Detection in Electronic Circuits
Table 1. Comparison of Neural Network—Based and Traditional Fault Diagnosis Methods in
Electronic Circuits

Ref Circuit Type Neural Network Traditional Key Findings
Model Method
(Aizenberg et  Analog Multi-valued Rule-based Improved multi-fault
al., 2021) neuron NN classification detection accuracy and
robustness.
(Binu & Analog RideNN (Rider  Expert-driven  Faster training, higher
Kariyappa, Optimization testing classification precision.
2018) NN)
(Chine et al., Photovoltaic ANN Statistical High accuracy under
2016) thresholds variable environmental
conditions.
(Fu et al., Power Wavelet + ANN  Conventional Enhanced dynamic fault
2016) Electronics monitoring detection in real-time.
(Gao et al., Analog Conditional Pattern-~ Reliable diagnosis under
2021) Variational NN matching uncertainty.
(Jiang et al.,  Power Optimized BP Standard BP Faster convergence and
2024) Electronics NN NN higher detection
reliability.
(Kumar & Digital ANN Manual Better generalization,
Singh, 2016) transistor noise tolerance.
testing
(Sobanski &  Digital/Rectifier ANN Open-circuit Accurate open-circuit
Kaminski, inspection fault localization.
2019)
(Wen et al., Industrial CNN Feature-based  Automatic feature
2017) Systems detection extraction; high
accuracy.
(Yang et al.,  Analog Denoising Handcrafted Robust to noise, end-~to-~
2021) Autoencoder feature end fault classification.
NN methods

Neural network based fault detection models consistently outperform traditional diagnostic
techniques across analog, digital, photovoltaic, and industrial electronic systems. In analog circuits,
multi-valued neuron networks and conditional variational neural networks demonstrate strong
capability in distinguishing multiple fault types and handling uncertainty (Aizenberg et al., 2021,
Gao et al., 2021). Optimization-driven architectures such as RideNN further enhance classification
precision and reduce computational training costs when compared with expert-driven or rule-
based diagnostic procedures (Binu & Kariyappa, 2018).

In renewable energy systems, ANN-based detectors provide high fault identification accuracy
even under fluctuating irradiance or environmental instability, outperforming threshold-based
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traditional methods (Chine et al., 2016). Hybrid methods integrating wavelet transforms with
neural networks have proven particularly effective for power electronic converters, enabling
reliable detection of transient and dynamic faults that conventional monitoring cannot capture (Fu
et al., 2016; Jiang et al., 2024).

Digital circuits also benefit significantly from ANN-based fault detection, which surpasses
manual transistor inspection by offering improved noise tolerance and generalization (Kumar &
Singh, 2016). Deep learning architectures such as CNNs and denoising autoencoders reduce
reliance on handcrafted features while increasing robustness to noisy signals (Wen et al., 2017;
Yang et al., 2021). Overall, NN-based FDD approaches provide superior adaptability, automation,

and scalability for modern electronic diagnostics.

Neural Network Architectures for High~Accuracy Fault Detection

Table 2. Neural Network Architectures for Fault Detection under Challenging Conditions

Ref Circuit/Application NN Operating Key Findings
Architecture  Condition
(Aizenberg  Analog Multi-valued  Multi-fault, High classification
et al., 2021) neuron NN noisy signals accuracy across
multiple fault
categories.
(Binu & Analog RideNN Dynamic Improved convergence
Kariyappa, training speed and precision.
2018) conditions
(Chine et al., Photovoltaic ANN Environmental — Robust fault detection
2016) Systems variability under changing
conditions.
(Fu et al., Power Electronics ~ Wavelet + Dynamic load,  Enhanced detection of
2016) ANN real-time transient faults.
(Gao et al., Analog CVNN Probabilistic, Reliable diagnosis
2021) uncertain under uncertainty.
(Jiang et al.,  Power Electronics =~ Optimized BP  Real-time, High accuracy with
2024) NN dynamic faster convergence.
(Kumar & Digital ANN Noisy signals Effective generalized
Singh, 2016) fault detection.
(Sobanski &  Digital/Rectifier ANN Open-circuit Accurate detection and
Kaminski, faults localization.
2019)
(Wen et al., Industrial Systems ~ CNN Time-series Automatic feature
2017) signals extraction; high
accuracy.
(Yang et al.,  Analog Denoising Noisy signals Robust end-to-end
2021) Autoencoder fault detection.
NN

Multiple neural network architectures have been designed to ensure high diagnostic accuracy
under challenging operating conditions such as noise, uncertainty, and dynamic loads. Multi-
valued neuron networks demonstrate excellent multi-fault classification capabilities under noisy
conditions in analog circuits (Aizenberg et al., 2021). Conditional variational neural networks
extend this strength by incorporating probabilistic modeling, enabling more reliable fault
identification where operational uncertainty is high (Gao et al., 2021). Optimization-driven models
such as RideNN improve classification precision and accelerate convergence in dynamic
environments (Binu & Kariyappa, 2018).

Hybrid architectures that integrate wavelet transforms with ANN structures provide strong
capabilities for transient fault detection, particularly in power electronics (Fu et al., 2016; Jiang et
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al., 2024). Deep neural architectures such as CNNs and denoising autoencoders add robustness to
noisy and waveform-based applications by learning discriminative features directly from raw
signals (Wen et al., 2017; Yang et al., 2021).

ANN-based models in photovoltaic systems maintain detection accuracy despite rapid
variations in environmental conditions (Chine et al., 2016). Similarly, ANN-based methods
outperform traditional open-circuit inspection techniques in rectifier and digital systems (Sobanski
& Kaminski, 2019). Overall, architectures combining deep learning, probabilistic modeling, and

nois

Optimization, Feature Extraction, and Hybrid Learning for Fault Diagnosis

Table 3. Enhancements in Neural Network-Based Fault Diagnosis Using Optimization and Hybrid

Approaches
Ref Circuit/Application NN Architecture = Enhancement Key Findings
/ Technique Method
(Binu & Analog RideNN Rider Faster training,
Kariyappa, Optimization higher classification
2018) Algorithm precision in analog
faults.
(Fu et al., Power Electronics ~ Wavelet + ANN  Feature Improved detection
2016) Extraction of transient and
dynamic faults.
(Gaoet al., Analog Conditional Probabilistic Robust diagnosis
2021) Variational NN Modeling under uncertain
(CVNN) operating conditions.
(Jiang et Power Electronics ~ Optimized Learning Rate &  Faster convergence,
al., 2024) Backpropagation Weight higher detection
NN Optimization accuracy.
(Wen et Industrial Systems ~ CNN End-to-End Automatic feature
al., 2017) Feature learning from raw
Extraction signals; reduces
manual
preprocessing.
(Yang et Analog Denoising Noise Reduction = High robustness
al., 2021) Autoencoder NN  / Feature against noisy inputs.
Learning
(Mohd General ANN Hybrid Learning Improved fault
Amiruddin  Engineering (supervised + generalization and
et al., unsupervised) adaptability.
2020)
(Aizenberg Analog Multi~Valued Multi~-Class Enhanced multi-fault
et al., Neuron NN Classification detection
2021) performance.
(Sobanski  Digital / Rectifier =~ ANN Open-Circuit Accurate localization
& Fault Feature of complex faults.
Kaminski, Extraction
2019)
(Chine et Photovoltaic ANN Environmental =~ Maintains robustness
al., 2016)  Systems Feature under variable
Integration environmental
conditions.

Integration of optimization, feature extraction, and hybrid learning significantly improves
neural network performance for detecting complex faults in electronic circuits. Optimization

Neural Networks for Fault Detection and Diagnosis in Electronic Circuits
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algorithms, such as the rider optimization in RideNN, enhance training efficiency and classification
precision by fine-tuning network parameters (Binu & Kariyappa, 2018). Feature extraction
methods, including wavelet-based transforms, CNNs, and autoencoder frameworks, enable
networks to automatically capture critical signal characteristics, improving detection in dynamic
and noisy environments (Fu et al., 2016; Wen et al., 2017; Yang et al., 2021). Probabilistic modeling
and hybrid learning approaches, such as conditional variational neural networks (CVNN) or
combinations of supervised and unsupervised learning, enhance robustness and generalization,
allowing networks to handle uncertain or previously unseen fault conditions (Gao et al., 2021,
Mohd Amiruddin et al., 2020). Multi-valued neuron architectures and targeted feature extraction
in digital rectifiers improve multi-fault detection and localization capabilities (Aizenberg et al.,
2021; Sobanski & Kaminski, 2019). In renewable energy and power systems, integrating
environmental and operational features further enhances adaptability under variable conditions
(Chine et al., 2016). Collectively, these techniques optimization, feature extraction, and hybrid
learning strengthen the accuracy, reliability, and scalability of neural network based fault diagnosis
systems, making them highly suitable for real-time and industrial applications.

2. Discussion

The rapid advancement of electronic systems has necessitated more sophisticated fault
detection and diagnosis (FDD) mechanisms capable of handling the increasing complexity of
analog, digital, and mixed-signal circuits. Traditional rule-based and model-driven diagnostic
methods are limited by their dependency on expert knowledge, lack of scalability, and inability to
generalize across diverse fault conditions. Neural network (NN)—based approaches address these
limitations by learning non-linear circuit behaviors and automatically recognizing fault signatures,
enabling real-time, adaptive, and reliable diagnosis (Mohd Amiruddin, Zabiri, Taqvi, & Tufa, 2020;
Furse, Kafal, Razzaghi, & Shin, 2020).

In analog circuits, multi-valued neuron neural networks (Aizenberg, Belardi, Bindi, Grasso,
Marnetti, Luchetta, & Piccirilli, 2021) and conditional variational neural networks (Gao, Yang,
Jiang, & Yan, 2021) have demonstrated superior classification accuracy across multiple fault types,
even under uncertainty. Optimization-driven models, such as RideNN (Binu & Kariyappa, 2018),
leverage rider optimization algorithms to enhance training efficiency and improve fault
classification precision. Similarly, in power electronics, optimized backpropagation networks
(Jiang, Huang, & Guo, 2024) and hybrid models combining wavelet analysis with ANN (Fu, Yang,
Wang, & Ren, 2016) have achieved higher robustness and real-time fault detection performance
under dynamic operating conditions.

Deep learning architectures, including convolutional neural networks (CNNs) and denoising
autoencoders, enable end-to~-end feature extraction from raw circuit signals, eliminating the need
for manual feature engineering. CNNs have proven effective in processing time-series and
waveform data for industrial systems, delivering high diagnostic accuracy (Wen, Li, Gao, & Zhang,
2017). Denoising autoencoders enhance robustness to noise contamination, enabling reliable fault
detection in analog circuits under real~-world signal variability (Yang, Wang, Chen, & Wang,
2021).

In digital and VLSI circuits, ANN models have outperformed conventional transistor-level
testing by providing better generalization, noise tolerance, and faster fault localization (Kumar &
Singh, 2016; Sobanski & Kaminski, 2019; Gaber, Hussein, & Moness, 2021). Hybrid AC/DC
microgrids also benefit from NN-based online fault detection and localization, demonstrating the
adaptability of neural networks in complex energy systems (Jasim, Jasim, Neagu, & Alhasnawi,
2022). In photovoltaic systems, ANN models maintain strong performance even under varying
environmental conditions, illustrating the generalizability of neural network—based FDD across
different application domains (Chine, Mellit, Lughi, Malek, Sulligoi, & Pavan, 2016).

The integration of optimization techniques, feature extraction methods, and hybrid learning
strategies significantly enhances NN performance. Rider optimization, probabilistic modeling,
wavelet transforms, and end-to-end feature learning collectively improve training efficiency, fault
classification accuracy, and robustness against noise and dynamic changes (Binu & Kariyappa,
2018; Fu et al., 2016; Gao et al., 2021; Wen et al., 2017; Yang et al., 2021). Multi-valued neuron
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and hybrid learning approaches further enable accurate detection of multiple simultaneous faults,
addressing the challenges posed by complex circuit architectures (Aizenberg et al., 2021; Mohd
Amiruddin et al., 2020).

CONCLUSION

Neural network—based fault detection and diagnosis (FDD) in electronic circuits has emerged
as a transformative approach, addressing the limitations of traditional model-based and rule-based
diagnostic methods. Modern electronic systems, encompassing analog, digital, and mixed-signal
circuits, are increasingly complex, often operating under noisy, dynamic, and uncertain conditions.
Neural networks, with their ability to learn non-linear behaviors and recognize subtle fault
signatures, offer adaptive, scalable, and reliable diagnostic capabilities that conventional methods
struggle to achieve.

Research has demonstrated that a wide range of neural network architectures including
multi-valued neuron networks, conditional variational networks, convolutional networks,
denoising autoencoders, and optimized backpropagation models can effectively detect and classify
faults across various applications. These architectures provide high accuracy, robustness, and
resilience against noise, environmental variability, and dynamic operating conditions. The
integration of feature extraction methods, hybrid learning strategies, and optimization algorithms
further enhances performance, allowing for efficient training, automatic feature identification, and
precise classification of multiple simultaneous faults.

In digital circuits and VLSI systems, neural networks improve generalization and noise
tolerance, enabling accurate transistor-level fault detection and localization. In power electronics,
renewable energy systems, and industrial automation, neural network—based FDD supports real-
time monitoring and predictive maintenance, enhancing system reliability and operational
efficiency. Overall, the convergence of advanced neural network models, optimization techniques,
and deep learning methods provides a robust framework for intelligent fault management in
modern electronic infrastructures. These advancements highlight the critical role of neural
networks in ensuring the resilience, safety, and longevity of contemporary electronic and cyber-
physical systems.

RECOMMENDATIONS

To further advance neural network—based fault detection and diagnosis in electronic circuits,
several key recommendations are proposed. First, the development of hybrid architectures that
combine multiple neural network models, such as CNNs with autoencoders or CVNNs with
optimization-~driven learning, can enhance accuracy, robustness, and adaptability under complex
fault conditions. Second, integrating advanced feature extraction techniques, including wavelet
transforms and signal decomposition methods, will allow neural networks to automatically identify
critical fault patterns while reducing dependency on manual preprocessing.

Third, implementing adaptive and online learning mechanisms can improve real-time
performance and enable the system to update continuously as new fault data becomes available.
This is particularly important for dynamic and rapidly changing environments such as power
electronics and industrial automation. Fourth, future research should focus on handling multiple
simultaneous faults and cascading failures, ensuring that neural networks can maintain high
accuracy even under compound fault conditions.

Finally, combining neural network-based FDD with predictive maintenance strategies, IoT-
enabled monitoring, and digital twin simulations can further improve system reliability and reduce
downtime. These approaches will facilitate the deployment of intelligent, autonomous diagnostic
systems capable of operating effectively in modern, complex electronic infrastructures, ensuring
long-term operational efficiency, safety, and resilience.
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