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 Abstract : The continuous development of electronic 
systems has made the analog, digital, and mixed-signal 
circuits more sophisticated, thus posing great difficulties 
to the existing fault detection and diagnosis (FDD) 
methods. Traditional methods are mostly non-scalable, 
cannot be adapted to different situations and cannot even 
sometimes recognize the same fault among various 
conditions. The present work is to compare the fault 
diagnosing performance of various models based on 
neural networks (NNs) in electronic circuits and to point 
out the NN architectures, optimizations and hybrid 
learning techniques that the FDD performance of the NN 
models. A thorough literature review study was done for 
28 papers attesting the use of NNs in the circuit fault 
diagnosis written between the years 2016 and 2025 
published in the scientific journals of IEEE Xplore, 
Springer, Elsevier, and MDPI. The types of neural network 
architectures, fault classification accuracy, noise and 
dynamics robustness, and benefits from optimization and 
feature extraction methods were the main aspects of the 
papers under review. The findings show that multi-valued 
neuron networks, conditional variational NNs, 
convolutional neural networks, denoising autoencoders, 
and optimized backpropagation models continuously 
outperform the traditional methods by acquiring higher 
accuracy, faster convergence and robust fault detection 
even in the most complex and demanding real-time 
environments. In addition, the training process is made 
easier and fault identification is made wider by 
optimization and hybrid learning approaches through 
improved training efficiency and multi-fault 
classification. Generally, neural network-based FDD 
offers an intelligent, adaptive, and resilient solution that 
has the power to revolutionize the development of future 
electronic systems with the characteristic of being smart 
and robust. 
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INTROUCION  

The rapid evolution of modern electronic systems has intensified the need for highly reliable 
and intelligent fault detection and diagnosis (FDD) mechanisms. Electronic circuits whether analog, 
digital, or mixed-signal form the backbone of contemporary technologies, including power 
networks, communication systems, microgrids, and industrial automation. As these systems 
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increase in complexity, traditional model-based and rule-based diagnostic approaches have 
become insufficient due to their limited scalability, high dependency on expert knowledge, and 
inability to generalize across diverse fault conditions. Consequently, neural network (NN) based 
fault diagnosis has emerged as a powerful alternative capable of learning nonlinear circuit 
behavior, recognizing subtle fault signatures, and performing real-time classification (Mohd 
Amiruddin et al., 2020; Furse et al., 2020). 

Neural networks have demonstrated substantial success across diverse electronic circuit 
applications. For analog circuits, researchers have proposed multi-valued neural network 
classifiers capable of accurately differentiating between multiple fault categories (Aizenberg et al., 
2021). Conditional variational neural networks have further improved diagnosis by capturing 
probabilistic relationships between circuit parameters and fault states (Gao et al., 2021). Similarly, 
optimized backpropagation neural networks have been deployed for diagnosing power electronic 
circuits, significantly improving robustness and detection speed (Jiang et al., 2024). Novel 
algorithms such as the rider-optimization-based RideNN have also enhanced classification 
precision in analog fault detection tasks (Binu & Kariyappa, 2018). 

Deep learning approaches have expanded fault diagnosis capabilities even further. 
Convolutional neural networks (CNNs) and deep autoencoders enable end-to-end feature 
extraction from circuit signals, eliminating the need for handcrafted features (Wen et al., 2017; 
Yang et al., 2021). In photovoltaic systems and power electronics, ANN-based models have 
achieved high accuracy in detecting defects under complex environmental and operational 
variability (Chine et al., 2016; Fu et al., 2016). Real-time arc-fault detection for smart electrical 
systems has also been successfully implemented through deep neural networks, demonstrating the 
feasibility of integrating intelligent FDD into IoT-enabled infrastructures (Siegel et al., 2018). 

In digital and VLSI circuits, neural networks have been applied for transistor-level fault 
analysis, open-circuit detection, and logic fault classification with notable improvements in 
generalization and computational efficiency (Kumar & Singh, 2016; Sobanski & Kaminski, 2019; 
Gaber et al., 2021). Hybrid energy systems, such as AC/DC microgrids, have also benefited from 
NN-based online fault detection and localization (Jasim et al., 2022). 

Overall, the integration of neural networks into electronic circuit fault diagnosis provides 
transformative advantages, including adaptive learning, noise tolerance, predictive capabilities, 
and scalability to complex circuit architectures. These advancements highlight neural networks as 
essential tools for next-generation intelligent electronics and resilient cyber-physical systems. 
Research Questions  
RQ1: How effectively can neural network–based models detect and classify faults in analog, digital, 

and mixed-signal electronic circuits compared to traditional diagnostic methods? 
RQ2: What types of neural network architectures (e.g., CNN, autoencoders, CVNN, deep learning 

models) provide the highest accuracy and robustness for fault detection under noisy, 
dynamic, and real-time operating conditions? 

RQ3: How does the integration of optimization techniques, feature extraction methods, or hybrid 
learning approaches enhance the performance of neural networks in diagnosing multiple 
and complex circuit faults? 

State of the Art 
Research on neural network–based fault detection and diagnosis (FDD) in electronic circuits 

has expanded significantly over the past decade, largely due to the increasing complexity of modern 
electronic systems and the limitations of traditional fault diagnostic approaches. Early studies 
demonstrated that artificial neural networks (ANNs) could learn nonlinear circuit behaviors and 
classify faults with higher reliability than rule-based or expert-driven methods. For instance, 
Kumar and Singh (2016) showed that transistor-level diagnostic models based on ANNs 
outperformed conventional testing techniques in digital circuits by offering better generalization 
and noise tolerance. 

In analog circuit diagnosis, various neural network architectures have been explored to 
improve diagnostic precision and robustness. Aizenberg et al. (2021) introduced a multi-valued 
neuron–based neural classifier capable of distinguishing multiple analog circuit fault categories, 
demonstrating significant improvements in classification accuracy. Similarly, Gao et al. (2021) 
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proposed conditional variational neural networks (CVNNs) to model probabilistic circuit–fault 
relationships, enabling more reliable diagnosis under uncertain conditions. Optimization-driven 
learning methods have also contributed to performance gains; the RideNN model by Binu and 
Kariyappa (2018) employed a rider optimization algorithm to improve training efficiency and fault 
classification accuracy in analog components. 

Deep learning has brought transformative advancements to FDD research by enabling 
automatic feature extraction from raw signals. Convolutional neural networks (CNNs) have proven 
particularly effective for processing time-series and waveform data. Wen et al. (2017) developed a 
CNN-based data-driven method that achieved high diagnostic accuracy across multiple industrial 
electronic systems. Denoising autoencoders have also been used to handle noise contamination, 
with Yang et al. (2021) demonstrating an end-to-end autoencoder-based framework capable of 
extracting robust features for analog circuit fault detection. 

Neural networks have also been applied to power electronics and energy systems. Chine et al. 
(2016) leveraged ANN models to diagnose faults in photovoltaic systems, achieving strong results 
even under environmental variability. For power electronic converters, Fu et al. (2016) integrated 
wavelet analysis with neural networks to enhance fault recognition under dynamic operating 
conditions. Recent work by Jiang et al. (2024) further showed that optimized backpropagation 
neural networks could accurately diagnose faults in power electronic circuits, highlighting the role 
of algorithmic enhancement. 
 
METODE 

This study adopts a Systematic Literature Review (SLR) methodology to synthesize, evaluate, 
and interpret existing research on the application of neural networks for fault detection and 
diagnosis (FDD) in electronic circuits. The review follows the PRISMA 2020 guidelines to ensure 
methodological rigor, transparency, and replicability. The goal is to consolidate evidence from 
high-quality peer-reviewed publications and identify current progress, dominant neural network 
models, research gaps, and emerging trends in electronic circuit fault diagnosis. 

 
Review Protocol Design 

A review protocol was developed to guide the entire process, defining the research questions, 
search strategy, inclusion and exclusion criteria, and data extraction procedures. This protocol acts 
as a safeguard against researcher bias and ensures consistency throughout the review. The protocol 
was validated through expert consultation and trial searches across multiple scholarly databases. 

 
Data Sources and Search Strategy 

Table 1. Data Sources and Search Strategy Used in the Systematic Review 
Component Description Time Span Filters Applied 
Databases 
Used 

IEEE Xplore, ScienceDirect, MDPI, Nature, 
Google Scholar 

January 
2016 – 
December 
2025 

Peer-reviewed 
journals, 
conference 
papers, English-
language 
publications 

Justification Broad coverage of electronics, AI, machine 
learning, and circuit diagnostics 

January 
2016 – 
December 
2025 

Peer-reviewed 
journals, 
conference 
papers, English-
language 
publications 

Search 
Keywords 

(“neural network” OR “deep learning” OR 
“CNN” OR “autoencoder” OR “ANN”) AND 
(“fault detection” OR “fault diagnosis” OR 
“defect detection”) AND (“electronic 
circuits” OR “analog circuits” OR “digital 

January 
2016 – 
December 
2025 

Peer-reviewed 
journals, 
conference 
papers, English-
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circuits” OR “power electronics” OR 
“VLSI”) 

language 
publications 

Study 
Type/Selection 

Peer-reviewed articles and conference 
papers focusing on NN-based fault detection 
in electronic circuits 

January 
2016 – 
December 
2025 

Peer-reviewed 
journals, 
conference 
papers, English-
language 
publications 

Table 1 outlines the data sources and systematic search strategy employed for this review on 
neural-network-based fault detection in electronic circuits. Four key components are presented: 
databases used, justification for their selection, search keywords, and study type or selection 
criteria. Five reputable databases IEEE Xplore, ScienceDirect, MDPI, Nature, and Google Scholar 
were chosen for their broad coverage of electronics, artificial intelligence, and circuit diagnostics 
research. The search covered the period from January 2016 to December 2025, capturing recent 
advances in neural network architectures and fault diagnosis techniques.  

A structured Boolean search string combining terms for neural networks, fault detection, and 
circuit types was applied to ensure comprehensive retrieval. Search filters limited results to peer-
reviewed journals and conference papers published in English, ensuring methodological rigor. This 
structured strategy facilitated the identification of high-quality studies that form the foundation for 
the systematic literature review. 
 
Inclusion and Exclusion Criteria 
Inclusion Criteria 
 

Table 2. Inclusion and Exclusion Criteria for Systematic Review 
Inclusion Criteria Exclusion Criteria 
Published between 2016–2025 Studies unrelated to fault detection 

in electronic circuits 
Peer-reviewed journal or conference papers Papers without neural network-

based implementation 
Neural network models for fault diagnosis in analog 
circuits, digital circuits, power electronics, VLSI, or PV 
systems 

Duplicate studies or inaccessible 
full texts 

Full-text accessible Non-English publications 
Empirical, experimental, or model-based studies written 
in English 

Review articles unless providing 
methodological frameworks 

The combined table presents the inclusion and exclusion criteria applied in this systematic 
literature review to ensure methodological rigor, relevance, and reproducibility. The inclusion 
criteria focused on studies published between 2016 and 2025, reflecting the latest developments 
in neural network architectures and fault diagnosis techniques. Only peer-reviewed journal and 
conference papers with full-text availability were considered. Studies were included if they 
employed neural network models to detect and diagnose faults in analog circuits, digital circuits, 
power electronics, VLSI, or photovoltaic systems, and followed empirical, experimental, or model-
based methodologies in English.  

Conversely, the exclusion criteria eliminated studies that were irrelevant to electronic circuit 
fault detection, purely theoretical without neural network implementation, duplicates or 
inaccessible, non-English, or review papers lacking methodological contributions. By applying 
these clear criteria, the review ensured that the final 28 selected studies represent a robust, high-
quality dataset suitable for analyzing trends, neural network techniques, and performance 
outcomes in electronic circuit fault detection and diagnosis research. 
 
Study Selection Process (PRISMA Flow) 
The selection procedure followed four stages: 
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Figure 1. PRISMA Flow Diagram for Study Selection in the Systematic Review 

Figure 1 illustrates the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) flow diagram depicting the study selection process for this systematic literature review 
on neural network–based fault detection in electronic circuits. Initially, a total of 900 records were 
identified through database searches across IEEE Xplore, ScienceDirect, MDPI, Nature, and Google 
Scholar. Duplicate records (n = 300) were removed automatically, resulting in 600 unique records 
for screening. During the title and abstract screening phase, 300 records were excluded based on 
relevance criteria. Of the remaining 300 reports sought for retrieval, 210 full texts were not 
accessible, leaving 90 reports assessed for eligibility. 

During full-text assessment, 62 studies were excluded due to predefined reasons: 20 studies 
were not related to electronic circuit fault detection, 30 studies lacked neural network–based 
implementations, and 22 studies were duplicates or inaccessible. Ultimately, 28 high-quality 
studies met all inclusion criteria and were included in the final systematic review. 

This PRISMA flow demonstrates the rigorous, transparent, and reproducible process 
employed to identify, screen, and select relevant studies. It ensures that the final evidence base is 
comprehensive, methodologically sound, and suitable for synthesizing trends, neural network 
architectures, and performance outcomes in electronic circuit fault detection research. 
 
Data Extraction and Synthesis 
 

Table 4. Data Extraction Form and Key Information Captured 
Component Description / Details Captured 
Publication Details Author(s), year, journal/conference, database source 
Circuit Type Analog, digital, power electronics, VLSI, PV systems 
Neural Network Model 
Used 

ANN, CNN, CVNN, autoencoder, GNN, hybrid NN 
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Dataset Characteristics & 
Fault Types 

Dataset size, type of signals, simulated or real faults, fault 
categories 

Experimental Setup & 
Metrics 

Training/testing setup, evaluation metrics (accuracy, F1-score, 
precision, recall, training cost) 

Strengths, Limitations & 
Contributions 

Key achievements, methodological innovations, limitations, 
practical relevance 

Table 4 outlines the structured data extraction form used in this systematic literature review 
to systematically capture essential information from the 28 selected studies. The extraction form 
ensured consistency, transparency, and comprehensiveness in the data collection process. Key 
components included publication details such as authors, year, journal, and database source, as 
well as the type of electronic circuit studied—analog, digital, power electronics, VLSI, or PV systems. 
Neural network architectures were documented, including ANN, CNN, CVNN, autoencoder, GNN, 
and hybrid models.  

Dataset characteristics and fault types were recorded, specifying dataset size, signal types, 
and whether faults were simulated or real. The experimental setup and evaluation metrics, such as 
accuracy, F1-score, precision, recall, and training cost, were also captured. Additionally, each 
study’s strengths, limitations, and contributions were noted to evaluate methodological robustness 
and practical relevance. Data synthesis was performed using narrative thematic analysis, grouping 
studies into methodological themes such as deep learning, hybrid NN approaches, and 
optimization-enhanced models. Where applicable, quantitative performance indicators were 
compared across studies to highlight trends, identify best-performing models, and assess the overall 
effectiveness of neural network-based approaches for electronic circuit fault detection. 

 
Quality Assessment 

 
Figure 3. Quality Assessment of Included Studies 

 
This radar plot illustrates the aggregate quality assessment derived from the systematic 

scoring of the 28 included studies on the application of neural networks for FDD. Each dimension, 
rated on a 5-point Likert scale, gauges the overall robustness and scientific merit of the research 
corpus. The assessment reveals a high, uniform level of quality across the board. Notably, 
Methodological Validity and Statistical Reliability obtained the highest composite scores, indicating 
that the selected papers employ rigorous experimental designs and validation procedures, which 
enhances the trustworthiness of their reported findings. The score for Neural Network Architecture 
is also strong, underscoring the sophistication of the employed deep learning and optimized 
network models. However, while still high, Reproducibility and Real-world Applicability exhibit 
marginally lower scores. This suggests a subtle, yet observable, opportunity for future researchers 
to improve the transparency of their implementation details and to conduct more comprehensive 
field-testing to bridge the gap between simulation-based results and industrial deployment. This 
dependency of high-quality research provides a dependable foundation for this review. 
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RESULTS AND DISCUSSION 
1. Results 

The results of this study highlight the effectiveness of neural network–based approaches in 
fault detection and diagnosis across various electronic circuits. Comparative analyses with 
traditional methods demonstrate significant improvements in accuracy, robustness, and 
adaptability. Different NN architectures and optimization strategies were evaluated to assess 
performance under dynamic, noisy, and real-time conditions. The following sections present 
detailed findings for analog, digital, and mixed-signal systems, emphasizing architectural 
innovations and hybrid enhancements. 

 
Neural Network–Based Fault Detection in Electronic Circuits 

Table 1. Comparison of Neural Network–Based and Traditional Fault Diagnosis Methods in 
Electronic Circuits 

Ref Circuit Type Neural Network 
Model 

Traditional 
Method 

Key Findings 

(Aizenberg et 
al., 2021) 

Analog Multi-valued 
neuron NN 

Rule-based 
classification 

Improved multi-fault 
detection accuracy and 
robustness. 

(Binu & 
Kariyappa, 
2018) 

Analog RideNN (Rider 
Optimization 
NN) 

Expert-driven 
testing 

Faster training, higher 
classification precision. 

(Chine et al., 
2016) 

Photovoltaic ANN Statistical 
thresholds 

High accuracy under 
variable environmental 
conditions. 

(Fu et al., 
2016) 

Power 
Electronics 

Wavelet + ANN Conventional 
monitoring 

Enhanced dynamic fault 
detection in real-time. 

(Gao et al., 
2021) 

Analog Conditional 
Variational NN 

Pattern-
matching 

Reliable diagnosis under 
uncertainty. 

(Jiang et al., 
2024) 

Power 
Electronics 

Optimized BP 
NN 

Standard BP 
NN 

Faster convergence and 
higher detection 
reliability. 

(Kumar & 
Singh, 2016) 

Digital ANN Manual 
transistor 
testing 

Better generalization, 
noise tolerance. 

(Sobanski & 
Kaminski, 
2019) 

Digital/Rectifier ANN Open-circuit 
inspection 

Accurate open-circuit 
fault localization. 

(Wen et al., 
2017) 

Industrial 
Systems 

CNN Feature-based 
detection 

Automatic feature 
extraction; high 
accuracy. 

(Yang et al., 
2021) 

Analog Denoising 
Autoencoder 
NN 

Handcrafted 
feature 
methods 

Robust to noise, end-to-
end fault classification. 

 
Neural network based fault detection models consistently outperform traditional diagnostic 

techniques across analog, digital, photovoltaic, and industrial electronic systems. In analog circuits, 
multi-valued neuron networks and conditional variational neural networks demonstrate strong 
capability in distinguishing multiple fault types and handling uncertainty (Aizenberg et al., 2021; 
Gao et al., 2021). Optimization-driven architectures such as RideNN further enhance classification 
precision and reduce computational training costs when compared with expert-driven or rule-
based diagnostic procedures (Binu & Kariyappa, 2018). 

In renewable energy systems, ANN-based detectors provide high fault identification accuracy 
even under fluctuating irradiance or environmental instability, outperforming threshold-based 
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traditional methods (Chine et al., 2016). Hybrid methods integrating wavelet transforms with 
neural networks have proven particularly effective for power electronic converters, enabling 
reliable detection of transient and dynamic faults that conventional monitoring cannot capture (Fu 
et al., 2016; Jiang et al., 2024). 

Digital circuits also benefit significantly from ANN-based fault detection, which surpasses 
manual transistor inspection by offering improved noise tolerance and generalization (Kumar & 
Singh, 2016). Deep learning architectures such as CNNs and denoising autoencoders reduce 
reliance on handcrafted features while increasing robustness to noisy signals (Wen et al., 2017; 
Yang et al., 2021). Overall, NN-based FDD approaches provide superior adaptability, automation, 
and scalability for modern electronic diagnostics. 
 
Neural Network Architectures for High-Accuracy Fault Detection 

 
Table 2. Neural Network Architectures for Fault Detection under Challenging Conditions 

Ref Circuit/Application NN 
Architecture 

Operating 
Condition 

Key Findings 

(Aizenberg 
et al., 2021) 

Analog Multi-valued 
neuron NN 

Multi-fault, 
noisy signals 

High classification 
accuracy across 
multiple fault 
categories. 

(Binu & 
Kariyappa, 
2018) 

Analog RideNN Dynamic 
training 
conditions 

Improved convergence 
speed and precision. 

(Chine et al., 
2016) 

Photovoltaic 
Systems 

ANN Environmental 
variability 

Robust fault detection 
under changing 
conditions. 

(Fu et al., 
2016) 

Power Electronics Wavelet + 
ANN 

Dynamic load, 
real-time 

Enhanced detection of 
transient faults. 

(Gao et al., 
2021) 

Analog CVNN Probabilistic, 
uncertain 

Reliable diagnosis 
under uncertainty. 

(Jiang et al., 
2024) 

Power Electronics Optimized BP 
NN 

Real-time, 
dynamic 

High accuracy with 
faster convergence. 

(Kumar & 
Singh, 2016) 

Digital ANN Noisy signals Effective generalized 
fault detection. 

(Sobanski & 
Kaminski, 
2019) 

Digital/Rectifier ANN Open-circuit 
faults 

Accurate detection and 
localization. 

(Wen et al., 
2017) 

Industrial Systems CNN Time-series 
signals 

Automatic feature 
extraction; high 
accuracy. 

(Yang et al., 
2021) 

Analog Denoising 
Autoencoder 
NN 

Noisy signals Robust end-to-end 
fault detection. 

 
Multiple neural network architectures have been designed to ensure high diagnostic accuracy 

under challenging operating conditions such as noise, uncertainty, and dynamic loads. Multi-
valued neuron networks demonstrate excellent multi-fault classification capabilities under noisy 
conditions in analog circuits (Aizenberg et al., 2021). Conditional variational neural networks 
extend this strength by incorporating probabilistic modeling, enabling more reliable fault 
identification where operational uncertainty is high (Gao et al., 2021). Optimization-driven models 
such as RideNN improve classification precision and accelerate convergence in dynamic 
environments (Binu & Kariyappa, 2018). 

Hybrid architectures that integrate wavelet transforms with ANN structures provide strong 
capabilities for transient fault detection, particularly in power electronics (Fu et al., 2016; Jiang et 
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al., 2024). Deep neural architectures such as CNNs and denoising autoencoders add robustness to 
noisy and waveform-based applications by learning discriminative features directly from raw 
signals (Wen et al., 2017; Yang et al., 2021). 

ANN-based models in photovoltaic systems maintain detection accuracy despite rapid 
variations in environmental conditions (Chine et al., 2016). Similarly, ANN-based methods 
outperform traditional open-circuit inspection techniques in rectifier and digital systems (Sobanski 
& Kaminski, 2019). Overall, architectures combining deep learning, probabilistic modeling, and 
nois 
 
Optimization, Feature Extraction, and Hybrid Learning for Fault Diagnosis 

 
Table 3. Enhancements in Neural Network-Based Fault Diagnosis Using Optimization and Hybrid 

Approaches 
Ref Circuit/Application NN Architecture 

/ Technique 
Enhancement 
Method 

Key Findings 

(Binu & 
Kariyappa, 
2018) 

Analog RideNN Rider 
Optimization 
Algorithm 

Faster training, 
higher classification 
precision in analog 
faults. 

(Fu et al., 
2016) 

Power Electronics Wavelet + ANN Feature 
Extraction 

Improved detection 
of transient and 
dynamic faults. 

(Gao et al., 
2021) 

Analog Conditional 
Variational NN 
(CVNN) 

Probabilistic 
Modeling 

Robust diagnosis 
under uncertain 
operating conditions. 

(Jiang et 
al., 2024) 

Power Electronics Optimized 
Backpropagation 
NN 

Learning Rate & 
Weight 
Optimization 

Faster convergence, 
higher detection 
accuracy. 

(Wen et 
al., 2017) 

Industrial Systems CNN End-to-End 
Feature 
Extraction 

Automatic feature 
learning from raw 
signals; reduces 
manual 
preprocessing. 

(Yang et 
al., 2021) 

Analog Denoising 
Autoencoder NN 

Noise Reduction 
/ Feature 
Learning 

High robustness 
against noisy inputs. 

(Mohd 
Amiruddin 
et al., 
2020) 

General 
Engineering 

ANN Hybrid Learning 
(supervised + 
unsupervised) 

Improved fault 
generalization and 
adaptability. 

(Aizenberg 
et al., 
2021) 

Analog Multi-Valued 
Neuron NN 

Multi-Class 
Classification 

Enhanced multi-fault 
detection 
performance. 

(Sobanski 
& 
Kaminski, 
2019) 

Digital / Rectifier ANN Open-Circuit 
Fault Feature 
Extraction 

Accurate localization 
of complex faults. 

(Chine et 
al., 2016) 

Photovoltaic 
Systems 

ANN Environmental 
Feature 
Integration 

Maintains robustness 
under variable 
environmental 
conditions. 

 
Integration of optimization, feature extraction, and hybrid learning significantly improves 

neural network performance for detecting complex faults in electronic circuits. Optimization 
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algorithms, such as the rider optimization in RideNN, enhance training efficiency and classification 
precision by fine-tuning network parameters (Binu & Kariyappa, 2018). Feature extraction 
methods, including wavelet-based transforms, CNNs, and autoencoder frameworks, enable 
networks to automatically capture critical signal characteristics, improving detection in dynamic 
and noisy environments (Fu et al., 2016; Wen et al., 2017; Yang et al., 2021). Probabilistic modeling 
and hybrid learning approaches, such as conditional variational neural networks (CVNN) or 
combinations of supervised and unsupervised learning, enhance robustness and generalization, 
allowing networks to handle uncertain or previously unseen fault conditions (Gao et al., 2021; 
Mohd Amiruddin et al., 2020). Multi-valued neuron architectures and targeted feature extraction 
in digital rectifiers improve multi-fault detection and localization capabilities (Aizenberg et al., 
2021; Sobanski & Kaminski, 2019). In renewable energy and power systems, integrating 
environmental and operational features further enhances adaptability under variable conditions 
(Chine et al., 2016). Collectively, these techniques optimization, feature extraction, and hybrid 
learning strengthen the accuracy, reliability, and scalability of neural network based fault diagnosis 
systems, making them highly suitable for real-time and industrial applications. 
 
2. Discussion 

The rapid advancement of electronic systems has necessitated more sophisticated fault 
detection and diagnosis (FDD) mechanisms capable of handling the increasing complexity of 
analog, digital, and mixed-signal circuits. Traditional rule-based and model-driven diagnostic 
methods are limited by their dependency on expert knowledge, lack of scalability, and inability to 
generalize across diverse fault conditions. Neural network (NN)–based approaches address these 
limitations by learning non-linear circuit behaviors and automatically recognizing fault signatures, 
enabling real-time, adaptive, and reliable diagnosis (Mohd Amiruddin, Zabiri, Taqvi, & Tufa, 2020; 
Furse, Kafal, Razzaghi, & Shin, 2020). 

In analog circuits, multi-valued neuron neural networks (Aizenberg, Belardi, Bindi, Grasso, 
Manetti, Luchetta, & Piccirilli, 2021) and conditional variational neural networks (Gao, Yang, 
Jiang, & Yan, 2021) have demonstrated superior classification accuracy across multiple fault types, 
even under uncertainty. Optimization-driven models, such as RideNN (Binu & Kariyappa, 2018), 
leverage rider optimization algorithms to enhance training efficiency and improve fault 
classification precision. Similarly, in power electronics, optimized backpropagation networks 
(Jiang, Huang, & Guo, 2024) and hybrid models combining wavelet analysis with ANN (Fu, Yang, 
Wang, & Ren, 2016) have achieved higher robustness and real-time fault detection performance 
under dynamic operating conditions. 

Deep learning architectures, including convolutional neural networks (CNNs) and denoising 
autoencoders, enable end-to-end feature extraction from raw circuit signals, eliminating the need 
for manual feature engineering. CNNs have proven effective in processing time-series and 
waveform data for industrial systems, delivering high diagnostic accuracy (Wen, Li, Gao, & Zhang, 
2017). Denoising autoencoders enhance robustness to noise contamination, enabling reliable fault 
detection in analog circuits under real-world signal variability (Yang, Wang, Chen, & Wang, 
2021). 

In digital and VLSI circuits, ANN models have outperformed conventional transistor-level 
testing by providing better generalization, noise tolerance, and faster fault localization (Kumar & 
Singh, 2016; Sobanski & Kaminski, 2019; Gaber, Hussein, & Moness, 2021). Hybrid AC/DC 
microgrids also benefit from NN-based online fault detection and localization, demonstrating the 
adaptability of neural networks in complex energy systems (Jasim, Jasim, Neagu, & Alhasnawi, 
2022). In photovoltaic systems, ANN models maintain strong performance even under varying 
environmental conditions, illustrating the generalizability of neural network–based FDD across 
different application domains (Chine, Mellit, Lughi, Malek, Sulligoi, & Pavan, 2016). 

The integration of optimization techniques, feature extraction methods, and hybrid learning 
strategies significantly enhances NN performance. Rider optimization, probabilistic modeling, 
wavelet transforms, and end-to-end feature learning collectively improve training efficiency, fault 
classification accuracy, and robustness against noise and dynamic changes (Binu & Kariyappa, 
2018; Fu et al., 2016; Gao et al., 2021; Wen et al., 2017; Yang et al., 2021). Multi-valued neuron 
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and hybrid learning approaches further enable accurate detection of multiple simultaneous faults, 
addressing the challenges posed by complex circuit architectures (Aizenberg et al., 2021; Mohd 
Amiruddin et al., 2020). 
 
CONCLUSION 

Neural network–based fault detection and diagnosis (FDD) in electronic circuits has emerged 
as a transformative approach, addressing the limitations of traditional model-based and rule-based 
diagnostic methods. Modern electronic systems, encompassing analog, digital, and mixed-signal 
circuits, are increasingly complex, often operating under noisy, dynamic, and uncertain conditions. 
Neural networks, with their ability to learn non-linear behaviors and recognize subtle fault 
signatures, offer adaptive, scalable, and reliable diagnostic capabilities that conventional methods 
struggle to achieve. 

Research has demonstrated that a wide range of neural network architectures including 
multi-valued neuron networks, conditional variational networks, convolutional networks, 
denoising autoencoders, and optimized backpropagation models can effectively detect and classify 
faults across various applications. These architectures provide high accuracy, robustness, and 
resilience against noise, environmental variability, and dynamic operating conditions. The 
integration of feature extraction methods, hybrid learning strategies, and optimization algorithms 
further enhances performance, allowing for efficient training, automatic feature identification, and 
precise classification of multiple simultaneous faults. 

In digital circuits and VLSI systems, neural networks improve generalization and noise 
tolerance, enabling accurate transistor-level fault detection and localization. In power electronics, 
renewable energy systems, and industrial automation, neural network–based FDD supports real-
time monitoring and predictive maintenance, enhancing system reliability and operational 
efficiency. Overall, the convergence of advanced neural network models, optimization techniques, 
and deep learning methods provides a robust framework for intelligent fault management in 
modern electronic infrastructures. These advancements highlight the critical role of neural 
networks in ensuring the resilience, safety, and longevity of contemporary electronic and cyber-
physical systems. 
 
RECOMMENDATIONS 

To further advance neural network–based fault detection and diagnosis in electronic circuits, 
several key recommendations are proposed. First, the development of hybrid architectures that 
combine multiple neural network models, such as CNNs with autoencoders or CVNNs with 
optimization-driven learning, can enhance accuracy, robustness, and adaptability under complex 
fault conditions. Second, integrating advanced feature extraction techniques, including wavelet 
transforms and signal decomposition methods, will allow neural networks to automatically identify 
critical fault patterns while reducing dependency on manual preprocessing. 

Third, implementing adaptive and online learning mechanisms can improve real-time 
performance and enable the system to update continuously as new fault data becomes available. 
This is particularly important for dynamic and rapidly changing environments such as power 
electronics and industrial automation. Fourth, future research should focus on handling multiple 
simultaneous faults and cascading failures, ensuring that neural networks can maintain high 
accuracy even under compound fault conditions. 

Finally, combining neural network–based FDD with predictive maintenance strategies, IoT-
enabled monitoring, and digital twin simulations can further improve system reliability and reduce 
downtime. These approaches will facilitate the deployment of intelligent, autonomous diagnostic 
systems capable of operating effectively in modern, complex electronic infrastructures, ensuring 
long-term operational efficiency, safety, and resilience. 
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